
adrien.allard.pro@gmail.com

Video game development
Techniques and methods

Real time Good practices Data driven

Background

Grand Strategy and 4X Games

Game that places focus on military strategy

at the level of movement and use of an

entire nation state or empire's resources.

● Explore

● Expand

● Exploit

● Exterminate

SEGA Europe

Amplitude Studios

GAMES2GETHER

Amplitude Studios

Amplitude Studios

2011 2012 2013 2014 2015 2016 2017
12 Dev 20 Dev 30 Dev 40 60 Dev

2018 2019
80 Dev

Endless Space 2012

Dungeon of the Endless 2014

Endless Legend 2014

http://www.youtube.com/watch?v=OsMa9EC3nf8

Endless Space 2 2017

http://www.youtube.com/watch?v=QBo-4f3b90o

Humankind 2020

http://www.youtube.com/watch?v=yl7YKppgaiY

Technologies

We use middlewares like Unity and Wwise.

We also develop our own tools and systems
in C#:

- Gameplay framework
- User Interface engine
- GPU based particules system
- AI framework

Real time
How to improve performances?

Real Time

Target: 60 frames per seconds (or 120 for VR)

● 16 milliseconds to compute a frame (for both CPU and GPU).

● Rendering take at least 50% of the CPU time frame.
○ Less than 8 milliseconds to compute the rest of the game (Gameplay, AI, Network, Audio …).

When you have a performance issue, check which processor is slowing down your

framerate to know where you need to make optimizations.

GPU side

● Vertex count

● Fill rate

● Post processes (SSAO, FXAA, …)

● Custom Shaders

What takes time

What takes time

CPU side

● Algorithms with big complexity

● Arithmetic operations

● Allocating memory

● Accessing hard drive data

● Bad uses of your game engine

● Draw calls

● Instantiate the least frequently you can.

● Adapt your problem to your scope.

● Use the right data structure.

● Try to reduce the algorithm complexity.

● Pre-compute data and store it in memory ...

● … but sometimes it’s faster to recompute data.

● Change to a faster (even if it’s less accurate) algorithm.

How to be more efficient?

Try to reduce the algorithm complexity but be careful with your context.

● Algorithm 1: O(n) = n²

● Algorithm 2: O(n) = n

Heavy Algorithmic Problems

Map height are in [40,150]

→ Algorithm 1 is more efficient in our case !

Take care of your constraints when you choose an algorithm.

Heavy Algorithmic Problems

Take care of your constraints when

you choose an algorithm.

If you have a less than 100 elements,

it’s better to have a simple linear

search than binary search.

Most of the time, KEEP IT SIMPLE !

Source: http://goo.gl/ub0CUg

Retrieve objects (or components) can be very expensive !

Heavy Algorithmic Problems

Game

Empires

Armies

*

*

Army GetArmyAtPosition(int row, int column)

For 50 empires, 10 armies by empire it takes 500 iterations to
retrieve this potential army.

Army GetArmyNearMe(int distance)

For a distance of 1 it takes 6 * 500 iterations.
For a distance of 2, 18 * 500 = 9000 iterations!

Heavy Algorithmic Problems

Game

Empires

Armies

*

*

Solution 2
Instantiate a map data structure that

contains the informations with a cheap

access by position.

A map is a matrix of size rows*columns
which contains the armies references
indexed by position.

World

Maps
*

ArmyMap

Army[,] army

Tile
int row
int column
Army army

Solution 1
Instantiate a tile data structure with

additional informations.

Problem
Aggregate data that are not related to
each other.

World
Tile [,] *

There is a lot of differents data structures that exists for a good reason. Find out what you

need and what is the best solution for your problem.

and many others ...

Data Structures

Array Cannot grow automatically. Very fast assignation speed.

List Automatically growing array. A bit slower than array but still very fast.

Dictionary Can retrieve value from key with O(1) to O(n) worst case complexity. Enumerate
and insertion are expensive.

SortedList Sorted generic list. Slowed on insertion.

Take care of your constraints when you choose a data-structure.

Data Structures

List Dictionary

Retrieve element fast: O(n) Retrieve element very fast: O(1) to O(n) in the
worst case (75 times faster)

Insertion is fast. (graph) Insertion is slow (175% slower)

Foreach is fast. Foreach is slow (57% slower)

To figure out what takes time. Use the unity profiler!

Unity Profiler

private List<int> list;

public void Start()
{

Profiler.BeginSample(“list”);
list = new List<int>(1000);
Profiler.EndSample();

}

You can also use the Unity Profiler to see the GPU usage and the frame debugger to see

how the frame is computed.

Unity Profiler

Your algorithms are not the only responsibles.

Be careful when you are using some features of your game engine.

Find out how things works !

The engine tools are designed to be used in a certain way.

Bad uses of your game engine

Bad uses of your game engine

SendMessage and BroadcastMessage are slow. Don’t use this functions!

Bad uses of your game engine

public class ExampleClass : MonoBehaviour {
 private void ApplyDamage(float damage) {
 print(damage);
 }

 private void Example() {
 SendMessage("ApplyDamage", 42.0f);
 }
}

1000 calls SendMessage 5.34ms Direct calls 0.05ms

Tree with 4 levels and 4 children per level BroadcastMessage 2.32ms Direct calls 0.07ms

Definition: An event in C# is a way for a class to provide notifications to clients of that

class when some interesting thing happens to an object.

Event is the c# implementation of the observer design pattern.

Event C#

Declaration

Event C#

public class MyObservableObject
{

public event System.EventHandler<System.EventArgs> OnSomethingAppend;

public void SomethingAppend()
{

if (this.OnSomethingAppend != null)
{

this.OnSomethingAppend.Invoke(this, new System.EventArgs());
}

}
}

Register and unregister observer

Event C#

public class Observer
{

public void RegisterObserver(MyObservableObject o)
{

o.OnSomethingAppend += this.SomethingAppendDelegate;
}

public void UnRegisterObserver(MyObservableObject o)
{

o.OnSomethingAppend -= this.SomethingAppendDelegate;
}

private void SomethingAppendDelegate(object sender, System.EventArgs args)
{

// Do stuff
}

}

Event versus Polling

Definition
Polling, or polled operation, in computer science, refers to actively sampling the status
of an external system as a synchronous activity.

Example
private void Update() {

if (UnityEngine.Input.GetMouseButtonDown(0)) {
// Do Something

}
}

Static allocations

int n;
int x[10];
double m;

The compiler defines that the code requires 4 + 4 × 10 + 8 = 52 bytes on the stack.

This space is called stack because as functions get called, their memory gets added on top

of existing memory.

As they terminate, they are removed in a LIFO (last in, first out) order.

Memory Allocation

Dynamic allocation

The function void* malloc (unsigned int size) requests size bytes of memory from

the operating system, and returns the pointer to that location as a result.

This memory is assigned from the heap space.

This is called the heap space since it can be selected from any portion of the space that

has not been allocated already.

While the stack remains nicely organized, memory in the heap tends to be more messy

and all over the place. Hence the name.

Memory Allocation

Differences between statically and dynamically allocated memory

Memory Allocation

Static allocation Dynamic allocation

Size must be known at compile time Size may be unknown at compile time

Performed at compile time Performed at run time

Assigned to the stack Assigned to the heap

First in last out No particular order of assignment

In C#

● Static allocation > Value type (int, float, struct, …)

● Dynamic allocation > Reference type (class)

A garbage collector takes care of the dynamic allocation.

Memory Allocation

Unlike in C++ class and struct are very different in c#.

Retrieve a data from memory can takes time.

1 cycle to read a register

4 cycles to reach to L1 cache

10 cycles to reach L2 cache

75 cycles to reach L3 cache

hundreds of cycles to reach main memory.

Between 0.08 and 0.16 ms to reach SSD.

Between 0.2 and 0.8 ms to reach HDD.

Accessing Data

Sources: http://goo.gl/uUdiOV - http://goo.gl/5DOUIV

http://goo.gl/uUdiOV
http://goo.gl/5DOUIV

In Unity:

● 0.04 ms to compute the arithmetic mean of 15 000 elements.

● 1 ms to instantiate 15 000 empty classes.

● 3 ms to instantiate 15 000 classes that contains a float value.

● 1 ms to instantiate 100 empty prefabs.

● 2.8 ms to instantiate 100 cube prefabs.

Instantiate is expensive

Test processor : Intel core i5-3570K @ 3.4 Ghz

Shoot’em up
Project

In the shoot them up project you need to instantiate some objects during game:

- A bullet each time an avatar is firing
- An enemy each time a new one is spawning

If a lot of instantiations are processed at the same time, it could produce some freezing of
your game (specially if you run on small device, like smartphone).

You need to handle the worst case ! (spawning of X avatar and Y bullets at the same
frame).

You must control the instantiation of your objects.

Project Control instantiation

Project Control instantiation

public interface IPeople {

 string GetName();

}

public class Villagers : IPeople {

 public string GetName() { return "Village Guy"; }

}

public class CityPeople : IPeople {

 public string GetName() { return "City Guy"; }

}

public enum PeopleType {

 RURAL,

 URBAN

}

Project Factory Method Pattern

public class Factory {

 public IPeople GetPeople(PeopleType type) {

 IPeople people = null;

 switch (type)

 {

 case PeopleType.RURAL :

 people = new Villagers();

 break;

 case PeopleType.URBAN:

 people = new CityPeople();

 break;

 default:

 break;

 }

 return people;

 }

}

The factory method pattern is a creational
pattern which uses factory methods to deal
with the problem of creating objects without
specifying the exact class of object that will
be created.

Project Shoot’em up

Recycling

When a bullet hit something, don’t destroy it. Just disable it and keep it ready to be
reused.

This recycling logic can be put in the factory. So you just have to ask for an instance of
bullet, the factory will recycle or create a new bullet for you.

Optimization: You can make an estimation of the number of bullets needed in your
game and then pre instantiate it while the game is loading.

You can do the same thing for avatars.

Programming
good practices

Defensive Programming

Defensive programming is an approach to improve:

● General quality - reducing the number of software bugs and problems.

● Making the source code comprehensible - the source code should be readable and

understandable so it is approved in a code audit.

● Making the software behave in a predictable manner despite unexpected inputs or

user actions.

You can’t prevent everything ! and if you think you can, you can’t prevent the future!

You must protect your code from errors.

Defensive Programming

● Intelligent source code reuse

If existing code is tested and known to work, reusing it may reduce the chance of

bugs being introduced.

● Secure input and output handling

"never trust the client"

● Low tolerance against "potential" bugs

"I'm not aware of all problems. I must protect against those I do know of and then I

must be proactive!"

Defensive Programming

Assertions

public void Assert(bool condition, string message) {
if (!condition) {

UnityEngine.Debug.LogError(message);
}

}

Check your results to test if their values are correct:

public float Abs(float number) {
float result = number < 0 : -number : number;
UnityEngine.Debug.Assert(result >= 0, “result must be positive”);
return result;

}

Defensive Programming

Exceptions

Check your inputs to test if their values are handled by your code:

public float Abs(float number) {
if (float.IsNaN(number)) {

throw new InvalidArgumentException(“number”, “The number must have a valid
value”);

}

float result = number < 0 : -number : number;
System.Collection.Generic.Assert(result >= 0);
return result;

}

Defensive Programming

Exceptions

Then, you can catch exceptions when you use your function:

public float Abs(float number1, float number2) {
float result = 0f;
try {

result = Abs(number1) + Abs(number2);
} catch (System.Exception exception) {

// Handle your error here
throw; // If your want to forward the exception.

}
return result;

}

Defensive Programming

Never assume “It cannot happen”

Handle all cases:

public void DoSomethingWithStuff() {
object stuff = CreateStuff();
if (stuff == null) {

Log(“Error while creating stuff instance”);
ManageErrorToAvoidCrash();
return;

}

stuff.DoSomething();
}

Code readability

Coding style

It is important to have a common coding style in a project, it makes the code a lot more

understandable. Use tools to help you (like StyleCop).

Naming

Be careful when you name your class, methods and variables.

If theirs name are carefully choiced, you’ll don’t need to read the code to understand

what it does.

float energyLostPerFiring = 10f // Better than “float loss = 10f”;

Documentation

Write documentation, specially when your code is complicated.

Code review

Code review is systematic examination of computer source code.

It is intended to find mistakes overlooked in software development, improving the overall

quality of software.

Some web-based source control services like GitHub have integrated a lot of tools to

handle code reviews.

Keep in mind that your code will be read by other people.

Architecture / Conception

It’s dangerous to start writing complicated code without using solid reflection tools.

Expose your ideas to other people

Confront your ideas to another brain is a strong way to ensure that your are on the right

way (even if the other people don’t know what you are talking about -> canard en

plastique).

Pen & paper or blackboard

Make schema and write your ideas, you may discover that it is stupid before beginning to

implement it.

UML

Very useful tool to talk about architecture with other programmers (because it’s a

common description language). You can try StarUML.

Architecture / Conception

Endless Space construction queue

StarSystem

Construction queue

Improvements built

Empire

System controller

Construction queues
by system index

Architecture / Conception

● Define who is really in charge of a specific functionality.

● Split your functionalities (and remove dependencies if possible).

StarSystem

Improvements built

Empire

System controller

Construction queues
by system index

Endless Space 2
Data Driven
Simulation

Data Driven

A data-driven game is a game that exposes a large amount of functionality outside of

code and lets the data determine the behavior of the game.

Draw submarine

Data Features

Blue

Draw balloon

Draw square

Result

Red

Yellow

Data Driven

A data-driven game is a game that exposes a large amount of functionality outside of

code and lets the data determine the behavior of the game.

Draw submarine

Red

Yellow

Data Features

Blue

Draw balloon

Draw square

Result

Data Driven

A data-driven game is a game that exposes a large amount of functionality outside of

code and lets the data determine the behavior of the game.

Source: http://goo.gl/Or51IO and http://goo.gl/xtVdSA

Pro

+ Re-Use

+ Job Specialization

Cons

- Data management layer cost

- Abstraction cost

Endless Space 2

Empire

Systems

Fleets

Global bonuses

Researches

Endless Space 2

Systems

Ressources

Population

Improvements

Garrison

Endless Space 2

Ships

Type

XP and Level

Attributes

Modules

Capacities

Endless Space 2

● Describe objects (systems, fleets, empire, …) with properties (float values)

● Properties values can be linked by some mathematical relations.

● We want to write all rules in text files (XML).

● Give the power to designers by exposing the gameplay rules in data files.

Describe an object

Object

Properties

Tags

Specializer

Name

Property Description

+

Property Description

+

+

Describe an object

Specializer

Property Description

Modifier Description

Name

Property Description

Modifier Description

Object

Property 1
Modifier 1

Property 2
Modifier 4

Tags

Objects architecture

Empire 1

System 1

Planet 1

Planet 2

System Improvement 1

Fleet 1

System 2

Planet 1

Planet 2

System Improvement 1

Fleet 1

Data format

<Descriptor Name="ClassPlanet" Type="Class">
 <Property Name="Industry" BaseValue="0"/>
 <Property Name="Food" BaseValue="0"/>
</Descriptor>

<Descriptor Name="FoodImprovement1" Type="Improvement">
 <Modifier TargetProperty="Food" Operation="Addition" Value="10"/>
</Descriptor>

<Descriptor Name="FoodImprovement2" Type="Improvement">
 <Modifier TargetProperty="Food" Operation="Multiplication" Value="2"/>
</Descriptor>

Shoot’em up
Project

Project Shoot’em up

Data driven level design

We want to describe our level in XML files.

The game will then read these files to create the real levels and run the game.
A level design can contains many informations:

- Enemies

- Type

- Position

- Spawn time

- Obstacles

- ...

Project XML Serialization

Serialization is the process of converting an object into a form that can be readily
transported.

The central class in XML serialization is the System.Serialization.Xml.XmlSerializer
class, and the most important methods in this class are the Serialize and Deserialize
methods.

XmlSerializer serializes only the public fields and property values of an object into an
XML stream, use it when the XML stream is expected to conform to a known XML
Schema (else you can use XmlWriter and XmlReader to manually serialize/deserialize
your data).

Sources: https://goo.gl/j85m99

Project XML Serialization

C# class

public class OrderForm
{
 public DateTime OrderDate;
}

XML file

<OrderForm>
 <OrderDate>12/12/01</OrderDate>
</OrderForm>

Project XML Serialization

With XmlSerializer you can:

● Serialize classes that implement ICollection or IEnumerable.

● Generate a XSD schema files from your code, then check if your data files are

well formed.

● Specify whether a field or property should be encoded as an attribute or an

element.

● Specify the name of an element or attribute if a field or property name is

inappropriate.

Sources: https://goo.gl/j85m99

A class must have a default constructor to be serialized by XmlSerializer.

Project XML Serialization

Sources: https://goo.gl/614Oo0

[XmlRoot(“Order”)]
public class OrderForm
{

[XmlAttribute(“Date”)]
 public DateTime OrderDate;

[XmlElement(“Value”)]
 public float FloatValue;
}

XML file

<Order Date=”25/09/2015”>
 <Value>42</Value>
</Order>

Project Shoot’em up

Code features needed:

- Ability to spawn an enemy with specific attributes.

- Create a “Game Manager” to manage level and progression.

- Meta-game system that check if the current level is finished and

launch the next one (keeping score and other persistent infos).

Project Shoot’em up

Then …
… Just add some XML files to add more

content to your game !

Conclusion

Takeaway

● Keep your code as simple as possible.

● Learn how to use your game engine.

● Beware of performances. Do not assume! Try and measure!

● It’s always CPU vs Memory problem.

● Data driven is good!

● Keep your code as simple as possible. (It’s very important!)

● Practice programming!

Questions & Answers

THANK YOU!
Questions?

Annex - Documentation

C#

http://www.codeproject.com/Articles/375166/Functional-programming-in-Csharp
http://www.codeproject.com/Articles/286255/Using-LINQ-Queries
http://msdn.microsoft.com/fr-fr/library/ms173109.aspx
http://www.dotnetperls.com

Unit testing

http://blogs.unity3d.com/2014/07/28/unit-testing-at-the-speed-of-light-with-unity-test-tools/

Algorithmics

http://www.redblobgames.com/

Data-Driven design

http://gamearchitect.net/Articles/DataDrivenDesign.html
http://www.cs.cornell.edu/database-OLD/games/

http://www.codeproject.com/Articles/375166/Functional-programming-in-Csharp
http://www.codeproject.com/Articles/286255/Using-LINQ-Queries
http://msdn.microsoft.com/fr-fr/library/ms173109.aspx
http://www.dotnetperls.com
http://blogs.unity3d.com/2014/07/28/unit-testing-at-the-speed-of-light-with-unity-test-tools/
http://www.redblobgames.com/
http://gamearchitect.net/Articles/DataDrivenDesign.html
http://www.cs.cornell.edu/database-OLD/games/

Annex - Documentation

C# Memory management for Unity

http://www.gamasutra.com/blogs/WendelinReich/20131109/203841/C_Memory_Management_for_Unity_Develop
ers_part_1_of_3.php
http://www.gamasutra.com/blogs/WendelinReich/20131119/203842/C_Memory_Management_for_Unity_Develop
ers_part_2_of_3.php
http://www.gamasutra.com/blogs/WendelinReich/20131127/203843/C_Memory_Management_for_Unity_Develop
ers_part_3_of_3.php

Memory hierarchy

http://en.wikipedia.org/wiki/Memory_hierarchy
http://www.sisoftware.co.uk/?d=qa&f=mem_hsw
http://www.gdcvault.com/play/1014645/-SPONSORED-Hotspots-FLOPS-and

http://www.gamasutra.com/blogs/WendelinReich/20131109/203841/C_Memory_Management_for_Unity_Developers_part_1_of_3.php
http://www.gamasutra.com/blogs/WendelinReich/20131109/203841/C_Memory_Management_for_Unity_Developers_part_1_of_3.php
http://www.gamasutra.com/blogs/WendelinReich/20131119/203842/C_Memory_Management_for_Unity_Developers_part_2_of_3.php
http://www.gamasutra.com/blogs/WendelinReich/20131119/203842/C_Memory_Management_for_Unity_Developers_part_2_of_3.php
http://www.gamasutra.com/blogs/WendelinReich/20131127/203843/C_Memory_Management_for_Unity_Developers_part_3_of_3.php
http://www.gamasutra.com/blogs/WendelinReich/20131127/203843/C_Memory_Management_for_Unity_Developers_part_3_of_3.php
http://en.wikipedia.org/wiki/Memory_hierarchy
http://www.sisoftware.co.uk/?d=qa&f=mem_hsw
http://www.gdcvault.com/play/1014645/-SPONSORED-Hotspots-FLOPS-and

Annex - Code samples

Shoot’em up game with Unity:

https://github.com/Tichau/Schmup

Tetris game (standalone/web/android) with Unity:

https://github.com/Tichau/Tetris

https://github.com/Tichau/Schmup
https://github.com/Tichau/Tetris

Contact

Adrien Allard
Lead AI Programmer
adrien.allard.pro@gmail.com

Slides > https://tinyurl.com/ampjin2019

Humankind > https://tinyurl.com/humankindgame

